- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ishiwaka, Yuko (2)
-
Jiang, Chenfanfu (1)
-
Lan, Lei (1)
-
Liu, Ziheng (1)
-
Lu, Zixuan (1)
-
Vondrick, Carl (1)
-
Wang, Huamin (1)
-
Wu, Kui (1)
-
Wu, Rundi (1)
-
Xu, Ruilin (1)
-
Yang, Yin (1)
-
Zheng, Changxi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Whenever the concept of high-performance cloth simulation is brought up, GPU acceleration is almost always the first that comes to mind. Leveraging immense parallelization, GPU algorithms have demonstrated significant success recently, whereas CPU methods are somewhat overlooked. Indeed, the need for an efficient CPU simulator is evident and pressing. In many scenarios, high-end GPUs may be unavailable or are already allocated to other tasks, such as rendering and shading. A high-performance CPU alternative can greatly boost the overall system capability and user experience. Inspired by this demand, this paper proposes a CPU algorithm for high-resolution cloth simulation. By partitioning the garment model into multiple (but not massive) sub-meshes or domains, we assign per-domain computations to individual CPU processors. Borrowing the idea of projective dynamics that breaks the computation into global and local steps, our key contribution is a new parallelization paradigm at domains for both global and local steps so that domain-level calculations are sequential and lightweight. The CPU has much fewer processing units than a GPU. Our algorithm mitigates this disadvantage by wisely balancing the scale of the parallelization and convergence. We validate our method in a wide range of simulation problems involving high-resolution garment models. Performance-wise, our method is at least one order faster than existing CPU methods, and it delivers a similar performance compared with the state-of-the-art GPU algorithms in many examples, but without using a GPU.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Xu, Ruilin; Wu, Rundi; Ishiwaka, Yuko; Vondrick, Carl; Zheng, Changxi (, Advances in neural information processing systems)We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training.more » « less
An official website of the United States government

Full Text Available